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Recent work is revealing neural correlates of a leading theory of motor control. By linking an elegant series of
behavioral experiments with neural inactivation in macaques with computational models, a new study shows
that premotor and parietal areas can be mapped onto a model for optimal feedback control.
We are constantly adapting. Whether it is

to new shoes, or walking on icy terrain, we

have the capacity to continually update

our motor actions in a goal-directed

manner. The leading theory of how we do

this — optimal feedback control (OFC)

theory — has been upheld by an

impressive number of elegant behavioral

studies in humans and other animals over

the last 20 years, yet the neural circuits

that implement such control continue to

remain elusive. Now, in a study reported

in this issue of Current Biology, Takei

et al.1 have chipped away at this

long-standing question in motor control

by providing important clues to how

neural circuits may begin to be mapped

onto theory.

The origins of optimal control date back

nearly 300 years, but in the 1950s

Wiener’s cybernetics movement brought

forth the notion that intelligent behavior is

rooted in feedback control. OFC theory

burst onto the motor control scene in

2002 with seminal work by Todorov and

Jordan2. They postulated that, by

deploying stochastic optimal feedback

control, the motor system would only

correct movements in task-relevant

dimensions. This allows variability in

task-irrelevant ones, and this ‘minimum

intervention’ principle nicely explains

many motor behaviors of humans.

The model was a breakthrough in

several respects. Firstly, this framework

requires multiple parts: an internal

forward model that enables the

computation of optimal control signals

(given noisy, delayed feedback), which is

integrated with knowledge of the body

dynamics and the available copy of the

out-going motor command (the so-called

efference copy; Figure 1A) via a

state-estimator. Secondly, the
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goal-directed nature of the motor

corrections beautifully matched many

observations. The model is allowed to

exploit redundancy to improve

performance, which matches to

observations of motor variability, and

task-relevant motor corrections that

occur mostly closest to the end-goal (for

example, correcting hand movements

mid-trajectory to match an average

trajectory template is not required; what is

required is hitting the end-goal). Lastly, in

contrast to other theories of motor

control, such as active inference3 or

feedback error learning4, OFC theory

does not require a trajectory template and

explicitly considers noise and delays,

which are important constraints of

biological systems.

Shortly thereafter, Scott5

hypothesized that, because OFC theory

was so powerful at explaining human

movement and consists of multiple

elements, it could be highly valuable for

mapping the neural basis of goal-

directed (volitional) motor control. He

laid out several crucial neural

observations that matched with OFC

theory. For example, the observed

tuning-properties of motor cortex (M1)

neurons activity were found to change in

a behaviorally dependent manner. This

powerful idea has spawned years of

research into how the observed

behaviors of the motor system — which

without a doubt must include such

notions as internal forward models and

goal-directed corrections — can be

mapped onto neural circuits.

Techniques such as optogenetics or

chemogenetics allow experimentalists to

design studies where one can spatially (in

the brain) and temporally (in the

behavioral space) perturb neural circuits
2, 2021 ª 2021 Elsevier Inc.
during motor behaviors6–9. While this is

mostly limited to rodent studies, the future

holds these types of experiments in

non-human primates. In their new work,

Takei et al.1 have causally tested OFC

theory in a non-human primate species

with an elegant use of cooling probes in

multiple areas of the macaque cortex1,10.

In prior work, Scott and colleagues11

showed that many regions of cortex

respond rapidly to limb perturbations.

Specifically, they recorded in five cortical

regions that are involved in motor control:

parietal area 5 (A5), primary

somatosensory cortex areas 1 and 2

(S1, S2), M1, and dorsal premotor cortex

(PMd)). They found that the delays of

sensory information from the periphery

could change in a task-relevant manner.

Namely, if limb-perturbations were

important for the ongoing task, the

measured response times in A5, S1

were only �25 milliseconds, yet a

target-selection change first causes

responses in PMd and M1 (with other

regions trailing behind). This was

intriguing evidence that parietal areas,

such as A5, might play a crucial role in

task-relevant corretions.

Building on their earlier work5,11,12,

Takei et al.1 have now causally tested the

role of A5 and PMd during limb

perturbations applied during a postural

stabilization task. First, they mapped their

behavioral paradigm onto the OFC theory

model and performed a series of

‘inactivation’ experiments to investigate

what model parameters have differential

effects on the predicted behavior. The

model has several key parameters that

they test: the ‘Kalman gain’ (K), which is

the term that provides an uncertainty

measure (that modulates the learning

rate); the internal forward model
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Figure 1. OFC theory and the brain.
(A) Highlights optimal feedback control theory, the brain regions perturbed, and the colors highlight the
matching model-to-brain predictions. ‘L’ is the feedback gain, ‘K’ is the Kalman gain in the state
estimator, ‘H’ is the observation matrix modeling the measurement of the actual state x, while Ĥ
transforms the corresponding estimated states x* the state estimator receives from the forward model.
Other terms are defined on the figure, but not directly tested in the author’s report. (B) The main results
from both the modelling work and the experimental testing are summarized. Note, the paired colors
highlight where the model matched. The (0) means no change predicted/observed; (+) means
increased, (–) means decreased behavioral changes. During combinations of cooling experiments,
these changes can add up (thereby increasing the number of + or – displayed in the table). (Cartoon
images are by Smith Breault, Macauley (CC 4.0) from scidraw.io.)
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observation (Ĥ); and the ‘feedback’ (L)

from the ‘state estimator’ (the estimated

state of the body) to the controller (the

region that sends out motor commands).

Formally, Takei et al. test variations of all

three components — the internal forward

model, state estimator and feedback

control policy — of an OFC model. The

true system state x is transformed into

measurements (observations) y by means

of an observation matrix H and passed to

the state estimator. Based on the

measurement noise, the state estimator

trades off these measurements with a

current state estimate, controlled by the

Kalman gain K (Figure 1A). The state

estimator computes the difference of the

actual vs. expected sensory feedback by

transforming the output of the internal

forward model by an observation matrix

Ĥ. The state estimation result is finally fed

back into the control policy, where it is

scaled with the feedback gain L

(Figure 1A).Modifying the aforementioned

parameters can non-trivially affect the

system behavior. The results of this

parameter testing are summarized in

Figure 1B; namely, if they inactivate ‘L’

they predict a change in response speed,

and if a strong reduction in L, or inH, there

is also an endpoint error. In contrast, if L is

normal, but K is modified, they predict an

endpoint error, but no response-speed

changes.

Next, in an elegant series of

experiments in which cooling probes

were used to inactivate spatial regions of

themacaque brain10,13, Takei et al.1 found

differential effects by cooling A5 and

PMd, suggesting they may play different

roles that can be mapped to OFC theory.

Cooling only A5 increased endpoint error,

while inhibition of PMd both increased

endpoint error and reduced the response

accuracy, among other metrics. While the

former finding directly links to the effect of

downscaling the Kalman gain in an OFC

theory model — highlighting that A5

cooling impairs state estimation — both

reduction of sensory input and the

feedback control gain in OFC theory

qualitatively predict the effect of cooling

PMd (Figure 1). In a series of additional

experiments combining cooling of both

PMd and A5, the authors went on to show

that impairments in endpoint errors and

response speed add up linearly and scale

sublinear for the maximally observed

deviation. They found that only
simultaneous attenuation of the Kalman

gain and the feedback control gains in

OFC theory, but not attenuation of

Kalman gain and sensory input, could

reproduce these observations in the

model (Figure 1B, grey box prediction).

Adding to this evidence of a link

between PMd cooling and reduction of

the feedback control gain, Takei et al.1

consider partial cooling of PMd as a third

paradigm and model this as a smaller

reduction in the feedback gain. Themodel

yields a characteristic response in this

setting: in contrast to the full reduction

experiment, partial impairment no longer

impacts the endpoint error (previously, an

increase was observed in all of the A5,

PMd and A5 plus PMd cooling

experiments). Alternatively to reducing

parameters in the OFC theory model,

single impairments of PMd or A5 can also

be modeled by increasing the noise levels

on the feedback or Kalman gain
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parameters, respectively. However, the

results of the partial cooling experiment

could be solely explained by downscaling

the feedback gain.

Overall, Takei et al.1 build on previous

findings regarding the role of A5 and PMd

in motor control by mapping their role to

specific parameters in optimal feedback

control theory. Specifically, the model

predictions matched the experimental

predictions in several key domains. As we

summarize in Figure 1B, parameters

involved in both control policy (L), and the

state estimator (K, H), could bemapped to

PMd and A5, respectively.

In the future, it will be important to

address some limitations of this work, and

build on it in new ways. While Takei et al.1

demonstrate links between OFC theory

predictions, A5, PMd and behavior, it is

likely that the model can be enriched by

taking into account the circuits

themselves. Fundamentally, OFC theory
iology 31, R330–R358, April 12, 2021 R357
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is a phenomenological model, and how

neurons implement its components such

as the Kalman gain is unresolved.

Moreover, there are numerous potential

implementations at the circuit level, such

that new models that provide concrete

experimental hypotheses will be

important.

To work in this direction, more

fine-grained cooling experiments might

yield richer input to the model (and, of

course, more temporally and cell-type-

specific approaches such as

optogenetics will become important). The

same applies for deactivating additional

individual brain regions. These additional

choices for influencing the biological brain

will apply to identify interesting working

points of the OFC theory model with

unique response patterns. Reproducing

such patterns in the biological system and

adding them in the author’s combinatorial

experimental design (Figure 1B) will shed

even more light on links between

biological brains and OFC theory model

components, and indicate where more

complex models are needed for an

accurate account of the neural

implementation14,15.
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