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SUMMARY

Extracting behavioral measurements non-invasively from video is stymied by the fact that it is a hard compu-
tational problem. Recent advances in deep learning have tremendously advanced our ability to predict
posture directly from videos, which has quickly impacted neuroscience and biology more broadly. In this
primer, we review the budding field of motion capture with deep learning. In particular, we will discuss the
principles of those novel algorithms, highlight their potential as well as pitfalls for experimentalists, and pro-
vide a glimpse into the future.
INTRODUCTION

The pursuit of methods to robustly and accurately measure ani-

mal behavior is at least as old as the scientific study of behavior

itself (Klette and Tee, 2008). Trails of hominid footprints, ‘‘mo-

tion’’ captured by Pliocene deposits at Laetoli that date to 3.66

million years ago, firmly established that early hominoids

achieved an upright, bipedal, and free-striding gait (Leakey

and Hay, 1979). Beyond fossilized locomotion, behavior can

now be measured in a myriad of ways: from GPS trackers, vide-

ography, and microphones to tailored electronic sensors (Kays

et al., 2015; Brown et al., 2013; Camomilla et al., 2018). Videog-

raphy is perhaps the most general and widely used method,

because it allows noninvasive, high-resolution observations of

behavior (Johansson, 1973; O’Connell et al., 2010; Weinstein,

2018). Extracting behavioral measures from video poses a chal-

lenging computational problem. Recent advances in deep

learning have tremendously simplified this process (Wu et al.,

2020; Mathis and Mathis, 2020), which quickly impacted neuro-

science (Mathis and Mathis, 2020; Datta et al., 2019).

In this primer, we review markerless (animal) motion capture

with deep learning. In particular, we review principles of algo-

rithms, highlight their potential, as well as discuss pitfalls for ex-

perimentalists and compare them to alternative methods (inertial

sensors, markers, etc.). Throughout, we also provide glossaries

of relevant terms from deep learning and hardware. Furthermore,

we will discuss how to use these deep learning-based motion

capture tools, what pitfalls to avoid, and provide perspectives

on what we believe will and should happen next.

What do we mean by ‘‘markerless motion capture’’? Although

biological movement can also be captured by dense or surface

models (Mathis and Mathis, 2020; G€uler et al., 2018; Zuffi

et al., 2016), here, we will almost exclusively focus on ‘‘key-

point-based pose estimation.’’ Human and many other animals
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motions are determined by the geometric structures formed by

several pendulum-like motions of the extremities relative to a

joint (Johansson, 1973). Seminal psychophysics studies by Jo-

hansson (1973) showed that just a few coherently moving key-

points are sufficient to be perceived as human motion. This

empirically highlights why pose estimation is a great summary

of such video data. Which keypoints should be extracted, of

course, dramatically depends on the model organism and the

goal of the study (e.g., many are required for dense, 3D models)

(G€uler et al., 2018; Sanakoyeu et al., 2020; Zuffi et al., 2016),

whereas a single point can suffice for analyzing some behaviors

(Mathis and Mathis, 2020). One of the great advantages of deep

learning-based methods is that they are very flexible, and the

user can define what should be tracked.

Principles of Deep Learning Methods for Markerless
Motion Capture
In raw video, we acquire a collection of pixels that are static in

their location and have varying value over time. For analyzing

behavior, this representation is sub-optimal: instead, we are

interested in properties of objects in the images, such as loca-

tion, scale, and orientation. Objects are collections of pixels in

the video moving or being changed in conjunction. By decom-

posing objects into keypoints with semantic meaning—such as

body parts in videos of human or animal subjects—a high-

dimensional video signal can be converted into a collection of

time series describing the movement of each keypoint (Figure 1).

Compared to raw video, this representation is easy to analyze

and semantically meaningful for investigating behavior and ad-

dressing the original research question for which the data have

been recorded.

Motion capture systems aim to infer keypoints from videos: in

marker-based systems, this can be achieved by manually

enhancing parts of interest (by colors, LEDs, reflective markers),
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Figure 1. Schematic Overview of Markerless Motion Capture or Pose Estimation
The pixel representation of an image (left) or sequence of images (video) is processed and converted into a list of keypoints (right). Semantic information about
object identity and keypoint type is associated to the predictions. For instance, the keypoints are structures with a name (e.g., ear), the x and y coordinates, aswell
as a confidence readout of the network (often this is included, but not for all pose estimation packages), and are then grouped according to individuals (subjects).
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which greatly simplifies the computer vision challenge, and then

using classical computer vision tools to extract these keypoints.

Markerless pose estimation algorithms directly map raw video

input to these coordinates. The conceptual difference between

marker-based and markerless approaches is that the former re-

quires special preparation or equipment, whereas the latter can

even be applied post hoc but typically requires ground truth an-

notations of example images (i.e., a training set). Notably,

markerless methods allow for extracting additional keypoints

at a later stage, something that is not possible with markers

(Figure 2).

Fundamentally, a pose estimation algorithm can be viewed

as a function that maps frames from a video into the coordi-

nates of body parts. The algorithms are highly flexible with re-

gard to what body parts are tracked. Typically, the identity of

the body parts (or objects) have semantically defined meaning

(e.g., different finger knuckles, the head), and the algorithms

can group them accordingly (namely, to assemble an individual)

so that the posture of multiple individuals can be extracted

simultaneously (Figure 1). For instance, for an image of one hu-

man the algorithm would return a list of pixel coordinates (these

can have subpixel resolution) per body part and frame (and

sometimes an uncertainty prediction) (Insafutdinov et al.,

2016; Kreiss et al., 2019; Mathis et al., 2018). The body parts

returned by the algorithm depend on both the application and

the training data provided—this is an important aspect with

respect to how the algorithms can be customized for appli-

cations.

Overview of Algorithms
Although many pose estimation algorithms (Moeslund et al.,

2006; Poppe, 2007) have been proposed, algorithms based on

deep learning (LeCun et al., 2015) are the most powerful as

measured by performance on human pose estimation bench-

marks (Toshev and Szegedy, 2013; Jain et al., 2014; Insafutdinov

et al., 2016; Newell et al., 2016; Cao et al., 2018; Xiao et al., 2018;

Cheng et al., 2020). More generally, pose estimation algorithms

fall under ‘‘object detection,’’ a field that has seen tremendous

advances with deep learning (aptly reviewed in Wu et al.,

2020). In brief, pose estimation can often intuitively be under-

stood as a system of an encoder that extracts important (visual)
features from the frame, which are then used by the decoder to

predict the body parts of interests along with their location in the

image frame.

In classical algorithms (see Moeslund et al., 2006; Poppe,

2007; Wu et al., 2020), handcrafted feature representations are

used that extract invariant statistical descriptions from images.

These features were then used together with a classifier

(decoder) for detecting complex objects like humans (Dalal and

Triggs, 2005; Moeslund et al., 2006). Handcrafted feature repre-

sentations are (loosely) inspired by neurons in the visual pathway

and are designed to be robust to changes in illumination and

translations; typical feature representations are scale invariant

feature transform (SIFT) (Lowe, 2004), histogram of gradients

(HOG) (Dalal and Triggs, 2005), or speeded up robust features

(SURF) (Bay et al., 2008).

In more recent approaches, both the encoder and decoders

(alternatively called the backbone and output heads, respec-

tively) are deep neural networks (DNN) that are directly optimized

on the pose estimation task. An optimal strategy for pose estima-

tion is jointly learning representations of the raw image or video

data (encoder) and a predictive model for posture (decoder). In

practice, this is achieved by concatenating multiple layers of

differentiable, non-linear transformations and by training such

a model as a whole using the back-propagation algorithm (Le-

Cun et al., 2015; Goodfellow et al., 2016; Wu et al., 2020). In

contrast to classical approaches, DNN-based approaches

directly optimize the feature representation in a way most suit-

able for the task at hand (for a glossary of deep learning terms,

see Box 1).

Machine learning systems are composed of a dataset, model,

loss function (criterion), and optimization algorithm (Goodfellow

et al., 2016). The dataset defines the input-output relationships

that the model should learn: in pose estimation, a particular

pose (output) should be predicted for a particular image (input)

(Figures 1 and 2B). The model’s parameters (weights) are itera-

tively updated by the optimizer to minimize the loss function.

Thereby the loss function measures the quality of a predicted

pose (in comparison to the ground truth data). Choices about

these four parts influence the final performance and behavior

of the pose-estimation system, and we discuss possible design

choices in the next sections.
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Figure 2. Comparison of Marker-Based (Traditional) and Markerless Tracking Approaches
(A) In marker-based tracking, prior to performing an experiment, special measures have to be taken regarding hardware and preparation of the subject (images
adapted from Inayat et al. [2020] and Maceira-Elvira et al. [2019]; IMU stands for inertial measurement unit).
(B) For markerless pose estimation, raw video is acquired and processed post hoc: using labels from human annotators, machine learning models are trained to
infer keypoint representations directly from video (on-line inference without markers is also possible) (Kane et al., 2020). Typically, the architectures underlying
pose estimation can be divided into a feature extractor and a decoder. The former maps the image representation into a feature space and the latter infers
keypoint locations given this feature representation. In modern deep learning systems, both parts of the systems are trained end-to-end.
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Datasets and Data Augmentation
Two kinds of datasets are relevant for training pose estimation

systems: first, one or multiple datasets used for related tasks—

such as image recognition—can be used for pre-training com-

puter vision models on this task (also known as transfer learning;

see Box 1). This dataset is typically considerably larger than the

one used for pose estimation. For example, ImageNet (Deng

et al., 2009), sometimes denoted as ImageNet-21K, is a highly

influential dataset, and a subset was used for the ImageNet

Large Scale Visual Recognition Challenge in 2012 (ILSRC-

2012) (Russakovsky et al., 2015) for object recognition. The full

ImageNet contains 14.2 million images from 21K classes; the

ILSRC-2012 subset contains 1.2million images of 1,000 different

classes (such as car, chair, etc.) (Russakovsky et al., 2015).

Groups working toward state-of-the-art performance on this

benchmark also helped push the field to build better DNNs and

openly share code. This dataset has been extensively used for

pre-training networks, which we will discuss in the model and

optimization section below.

The second highly relevant dataset is the one curated for

the task of interest—Mathis et al. (2018) empirically demon-

strated that the size of this dataset can be comparably small

for typical pose estimation cases in the laboratory. Typically,

this dataset contains 10–500 images, versus the standard hu-

man pose estimation benchmark datasets, such as MS COCO

(Lin et al., 2014) or MPII pose (Andriluka et al., 2014), which
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has annotated 40,000 images (of 26,000 individuals). This im-

plies that the dataset that is curated is highly influential on the

final performance, and great care should be taken to select

diverse postures, individuals, and background statistics and

labeling the data accurately (discussed below).

In practice, several factors matter: the performance of a

fine-tuned model on the task of interest, the amount of images

that need to be annotated for fine-tuning the network, and the

convergence rate of optimization algorithm (i.e., how many

steps of gradient descent are needed to obtain a certain per-

formance). Using a pre-trained network can help with this in

several regards: He et al. (2018) show that in the case of large

training datasets, pre-training typically aids with convergence

rates, but not necessarily the final performance. Under the

right circumstances (i.e., given enough task-relevant data)

and with longer training, randomly initialized models can

match the performance of fine-tuned ones for key point detec-

tion on COCO (He et al., 2018) and horses (Mathis et al.,

2019); however, the networks are less robust (Mathis et al.,

2019). Beyond robustness, using a pre-trained model is gener-

ally advisable when the amount of labeled data for the target

task is small, which is true for many applications in neurosci-

ence, because it leads to shorter training times and better per-

formance with less data (He et al., 2018; Mathis et al., 2018,

2019; Arac et al., 2019). Thus, pre-trained pose estimation al-

gorithms save training time, increase robustness, and require



Box 1. Glossary of Deep Learning Terms

An excellent textbook for Deep Learning is provided by Goodfellow et al. (2016). See Dumoulin and Visin (2016) for an in-depth

technical overview of convolution arithmetic.

Artificial neural network (ANN): an ANN can be represented by a collection of computational units

(‘‘neurons’’) arranged in a directed graph. The output of each unit is computed as a weighted sum of its

inputs, followed by a nonlinear function.

Convolutional neural network (CNN): A CNN is an ANN composed of one or multiple convolutional

layers. Influential early CNNs are the LeNet, AlexNet and VGG16 (LeCun et al., 2015; Goodfellow et al.,

2016; Wu et al., 2020).

Residual networks (ResNets): increasing network depth makes deep ANNs (DNNs) more expressive

compared to adding units to a shallow architecture. However, optimization becomes hard for standard

convolutional neural networks (CNNs) beyond 20 layers, at which point depth in fact decreases the

performance (He et al., 2016). In residual networks, instead of learning a mapping y = fðxÞ, the layer is

re-parametrized to learn the mapping y = x + fðxÞ, which improves optimization and regularizes the loss

landscape (Li et al., 2018). These networks can havemuch larger depth without diminishing returns (He

et al., 2016) and are the basis for other popular architectures such as MobileNets (Sandler et al., 2018)

and EfficientNets (Tan and Le, 2019).

Convolution: a convolution is a special type of linear filter. Compared with a full linear transformation,

convolutional layers increase computational efficiency by weight sharing (LeCun et al., 2015; Good-

fellow et al., 2016). By applying the convolution, the same set of weights is used across all locations in

the image.

Deconvolution: deconvolutional layers allow to upsample a feature representation. Typically, the

kernel used for upsampling is optimized during training, similar to a standard convolutional layer.

Sometimes, fixed operations such as bilinear upsampling filters are used.

Stride, downsampling, and dilated (atrous) convolutions: in DNNs for computer vision, images are

presented as real-valued pixel data to the network and are then transformed to symbolic represen-

tations and image annotations, such as bounding boxes, segmentation masks, class labels, or key-

points. During processing, inputs are consecutively abstracted by aggregating information from

growing ‘‘receptive fields.’’ Increasing the receptive field of the unit is possible by different means:

increasing the stride of a layer computes outputs only for every n-th input and effectively downsamples

the input with a learnable filter. Downsampling layers perform the same operation, but with a fixed

kernel (e.g., taking the maximum or mean activation across the receptive field). In contrast, atrous or

dilated convolutions increase the filter size by adding intermittent zero entries between the learnable

filter weights—e.g., for a dilation of 2, a filter with entries (1,2,3) would be converted into (1,0,0,2,0,0,3).

This allows increases in the receptive field without losing resolution in the next layers and is often

applied in semantic segmentation algorithms (Chen and Ramanan, 2017) and pose estimation (Insa-

futdinov et al., 2016; Mathis et al., 2018).

(Continued on next page)
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Box 1. Continued

Transfer learning: the ability to use parameters from a network that has been trained on one task—

e.g. classification, see (i) as part of a network to perform another task—e.g., pose estimation, see (ii).

The approach was popularized with DeCAF (Donahue et al., 2014), which used AlexNet (Krizhevsky

et al., 2012) to extract features to achieve excellent results for several computer vision tasks.

Transfer learning generally improves the convergence speed ofmodel training (He et al., 2018; Zamir

et al., 2018; Arac et al., 2019; Mathis et al., 2019) and model robustness compared to training from

scratch (Mathis et al., 2019).
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substantially less training data. Indeed, most packages in

neuroscience now use pre-trained models (Mathis et al.,

2018, 2020; Graving et al., 2019; Arac et al., 2019; Bala

et al., 2020; Liu et al., 2020), although some do not (Pereira

et al., 2019; G€unel et al., 2019; Zimmermann et al., 2020)

and yet can give acceptable performance for simplified situa-

tions with aligned individuals.

More recently, larger datasets like the 3.5 billion Instagram da-

taset (Mahajan et al., 2018) JFT (with 300 million images) (Hinton

et al., 2015; Xie et al., 2020) and OpenImages (Kuznetsova et al.,

2018) have become popular, further improving performance and

robustness of the consideredmodels (Xie et al., 2020). What task

is used for pre-training alsomatters. Corroborating this insight, Li

et al. (2019) showed that pre-training on a large-scale object

detection task can improve performance for tasks that require

fine spatial information like segmentation.

Besides large datasets for pre-training, a curated dataset

with pose annotations is needed for optimizing the algorithm

on the pose estimation task. The process is discussed in

more detail below and it typically suffices to label a few

(diverse) frames. Data augmentation is the process of expand-

ing the training set by applying specified manipulations (like

rotating or scaling image size). Based on the chosen corrup-

tions, models become more invariant to rotations, scale

changes, or translations and thus more accurate (with less

training data). Augmentation can also help with improving

robustness to noise, like jpeg compression artifacts and mo-

tion blur (Figure 3). Of note, data augmentation schemes

should not affect the semantic information in the image: for

instance, if color conveys important information about the

identity of an animal, augmentations involving changes in color

are not advisable. Likewise, augmentations that change the

spatial position of objects or subjects should always be

applied to both the input image and the labels (Box 2).

Model Architectures
Systems for markerless pose estimation are typically

composed of a backbone network (encoder), which takes

the role of the feature extractor, and one or multiple heads

(decoders). Understanding the model architectures and design
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choices common in deep learning-based pose estimation sys-

tems requires basic understanding of convolutional neural net-

works. We summarize the key terms in Box 1 and expand on

what encoders and decoders are below.

Instead of using handcrafted features as in classical sys-

tems, deep learning-based systems employ ‘‘generic’’ encoder

architectures that are often based on models for object recog-

nition. In a typical system, the encoder design affects the most

important properties of the algorithms such as its inference

speed, training-data requirements, and memory demands.

For the pose estimation algorithms so far used in neurosci-

ence, the encoders are either stacked hourglass networks

(Newell et al., 2016), MobileNetV2s (Sandler et al., 2018), Re-

sNets (He et al., 2016), DenseNets (Huang et al., 2017), or Ef-

ficientNets (Tan and Le, 2019). These encoder networks are

typically pre-trained on one or multiple of the larger-scale da-

tasets introduced previously (such as ImageNet), because this

has been shown to be an advantage for pose estimation on

small lab-scale-sized datasets (Mathis et al., 2019, 2018;

Arac et al., 2019). For common architectures, this pre-training

step does not need to be carried out explicitly, as trained

weights for popular architectures are already available in com-

mon deep learning frameworks.

The impact of the encoder on DNN performance is a highly

active research area. The encoders are continuously improved

in speed and object recognition performance (Huang et al.,

2017; Sandler et al., 2018; Tan and Le, 2019; Wu et al., 2020;

Kornblith et al., 2019). Naturally, due to the importance of the Im-

ageNet benchmark, the accuracy of network architectures

continuously increases (on that dataset). For example, we were

able to show that this performance increase is not merely

reserved for ImageNet, or (importantly) other object recognition

tasks (Kornblith et al., 2019), but in fact that better architectures

on ImageNet are also better for pose estimation (Mathis et al.,

2020). However, being better on ImageNet also comes at the

cost of decreasing inference speed and increased memory de-

mands. DeepLabCut (an open source toolbox for markerless

pose estimation popular in neuroscience) thus incorporates

backbones fromMobileNetV2s (faster) to EfficientNets (best per-

formance on ImageNet) (Mathis et al., 2019, 2020).
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Figure 3. Example Augmentation Images with Labeled Body Parts in Red
(A) Two example frames of Alpine choughs (Pyrrhocorax graculus) near Mont Blanc with human-applied labels in red (original). The images to the right illustrate
three augmentations (title denotes the type of augmentation).
(B) Two example frames of a trail-tracking mouse (Mus musculus) from Mathis et al. (2018) with four labeled body parts as well as augmented variants. Open in
Google Colaboratory: https://colab.research.google.com/github/DeepLabCut/Primer-MotionCapture/blob/master/COLAB_Primer_MotionCapture_Fig3.ipynb
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Convolutional Neural Network (CNN)
A CNN is an ANN composed of one or multiple convolutional

layers. Influential early CNNs are the LeNet, AlexNet, and VGG16

(LeCun et al., 2015; Goodfellow et al., 2016; Wu et al., 2020).

In (standard) convolutional encoders, the high-resolution input

images get gradually downsampled while the number of learned

features increases. Regression-based approaches that directly

predict keypoint locations from the feature representation can

potentially deal with this downsampled representation. When

the learning problem is instead cast as identifying the keypoint lo-

cations on a grid of pixels, the output resolution needs to be

increased first, often by deconvolutional layers (Insafutdinov

et al., 2016; Xiao et al., 2018). We denote this part of the network

as the decoder, which takes downsampled features, possibly

from multiple layers in the encoder hierarchy, and gradually up-

samples them again to arrive at the desired resolution. The first

models of this class were fully convolutional networks (Long

et al., 2015), and later DeepLab (Chen and Ramanan, 2017).

Many popular architectures today follow similar principles.

Design choices include the use of skip connections between

decoder layers, but also skip connections between the encoder

and decoder layers. Example encoder-decoder setups are illus-

trated in Figure 4. The aforementioned building blocks—en-

coders and decoders—can be used to form a variety of different

approaches, which can be trained end-to-end directly on the

target task (i.e., pose estimation).
Pre-trained models can also be adapted to a particular appli-

cation. For instance, DeeperCut (Insafutdinov et al., 2016), which

was adapted by the animal pose estimation toolbox DeepLab-

Cut (Mathis et al., 2018), was built with a ResNet (He et al.,

2016) backbone network, but adapted the stride by atrous con-

volutions (Chen et al., 2018) to retain a higher spatial resolution

(Box 1). This allowed larger receptive fields for predictions while

retaining a relatively high speed (i.e., for video analysis), but most

importantly, because ResNets can be pre-trained on ImageNet,

those initialized weights could be used. Other architectures, like

stacked hourglass networks (Newell et al., 2016) used in Deep-

Fly3D (G€unel et al., 2019) and DeepPoseKit (Graving et al.,

2019), retain feature representations at multiple scales and

pass those to the decoder (Figures 4A and 4B).

Loss Functions: Training Architectures on Datasets
Keypoints (i.e., body parts) are simply coordinates in image

space. There are two fundamentally different ways for estimating

keypoints (i.e., how to define the loss function). The problem can

be treated as a regression problem with the coordinates as tar-

gets (Toshev and Szegedy, 2013; Carreira et al., 2016). Alterna-

tively, andmore popular, the problem can be cast as a classifica-

tion problem, where the coordinates are mapped onto a grid

(e.g., of the same size as the image) and the model predicts a

heatmap (scoremap) of location probabilities for each body

part (Figure 4C). In contrast to the regression approach (Toshev
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Box 2. Key Parameters and Choices

The key design choices of pose estimation systems are dataset curation, data augmentation, model architecture selection, opti-

mization process, and the optimization criterions.

d Data augmentation: the technique of increasing the training set by converting images and annotations into new, altered im-

ages via geometric transformations (e.g., rotation, scaling, ...), image manipulations (e.g., contrast, brightness, .), etc.

(Figure 3). Depending on the annotation data, various augmentations (i.e., rotation symmetry, etc.) are ideal. Packages such

as Tensorpack (Wu, 2016) and imgaug (Jung et al., 2020) aswell as tools native to PyTorch (Paszke et al., 2019) and TensorFlow

(Abadi et al., 2016) provide common augmentation methods and are used in many packages.

d Model architecture: users should select an architecture that is accurate and fast (enough) for their goal. Top performing net-

works (in terms of accuracy) include Stacked Hourglass (Newell et al., 2016), ResNets (He et al., 2016), and EfficientNets (Tan

and Le, 2019) with appropriate decoders (Insafutdinov et al., 2016; Xiao et al., 2018; Kreiss et al., 2019; Mathis et al., 2020) as

well as recent high-resolution nets (Sun et al., 2019; Cheng et al., 2020). Performance gains in speed at the expense of slightly

worse accuracy are possible with (optimized) lightweight models such as MobileNetV2 (Sandler et al., 2018) in DeepLabCut

(Mathis et al., 2019) and stacked hourglass networks with DenseNets (Huang et al., 2017) as proposed in DeepPoseKit (Graving

et al., 2019); often this performance gap can be rescued with good data augmentation.
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and Szegedy, 2013), this is fully convolutional, allows modeling

of multi-modal distributions, and aids the training process

(Tompson et al., 2014; Newell et al., 2016; Insafutdinov et al.,

2016; Cao et al., 2018). Moreover, the heatmaps have the advan-

tage that one can naturally predict multiple locations of the

‘‘same’’ body part in the same image (i.e., two elbows) without

mode collapse (Figure 5A).

Loss functions can also reflect additional priors or inductive

biases about the data. For instance, DeepLabCut uses location

refinement layers (locref), which counteract the downsampling

inherent in encoders, by training outputs to predict corrective

shifts in image coordinates relative to the downsampled output

maps (Figure 5A). In pose estimation, it is possible to define a

skeleton or graph connecting keypoints belonging to subjects

with the same identity (see below) (Insafutdinov et al., 2016;

Cao et al., 2018). When estimating keypoints over time, it is

also possible to employ temporal information and encourage

the model to only smoothly vary its estimate among consecutive

frames (Insafutdinov et al., 2017; Yao et al., 2019; Xu et al., 2020;

Zhou et al., 2020). Based on the problem, these priors can be

directly encoded and be used to regularize the model.

How can pose estimation algorithms accommodate multiple

individuals? Fundamentally, there are two different ap-

proaches: bottom-up and top-down methods (Figure 5). In

top-down methods, individuals are first localized (often with

another neural network trained on object localization), then

pose estimation is performed per localized individual (Xiao

et al., 2018; Newell et al., 2016; Sun et al., 2019). In bottom-

up methods, all body parts are localized, and networks are

also trained to predict connections of body parts within individ-

uals (i.e., limbs). These connections are then used to link candi-

date body parts to form individuals (Cao et al., 2018; Insafutdi-

nov et al., 2017; Kreiss et al., 2019; Cheng et al., 2020). Of note,

these techniques can be used on single individuals for

increased performance, but often are not needed and usually

imply reduced inference speed.

Optimization
For pre-training, stochastic gradient descent (SGD) (Bottou,

2010) with momentum (Sutskever et al., 2013) is an established
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method. Different variants of SGD are now common (such as

Adam) (Kingma and Ba, 2015) and used for fine-tuning the result-

ing representations. As mentioned above, pose estimation algo-

rithms are typically trained in a multi-stage setup in which the

backbone is trained first on a large (labeled) dataset of a poten-

tially unrelated task (like image classification). Users can also

download these pre-trained weights. Afterward, the model is

fine-tuned on the pose-estimation task. Once trained, the quality

of the prediction can be judged in terms of the root-mean-square

error (RMSE), which measures the distance between the ground

truth keypoints and predictions (Mathis et al., 2018; Pereira et al.,

2019), or by measuring the percentage of correct keypoints

(PCK) (Andriluka et al., 2014; Mathis et al., 2019) (i.e., the fraction

of detected keypoints that fall within a defined distance of the

ground truth).

To properly estimate model performance in an application

setting, it is advisable to split the labeled dataset at least into

train and test subsets. If systematic deviations can be expected

in the application setting (e.g., because the subjects used for

training the model differ in appearance from subjects encoun-

tered at model deployment) (Mathis et al., 2019), this should be

reflected when choosing a way to split the data. For instance,

if data from multiple individuals is possible, distinct individuals

should form distinct subsets of the data. On the contrary, strate-

gies like splitting data by selecting every n-th frame in a video

likely overestimates the true model performance.

The model is then optimized on the training dataset, while per-

formance is monitored on the validation (test) split. If needed, hy-

perparameters—like parameter settings of the optimizer or also

choices about the model architecture—of the model can be

adapted based on an additional validation set.

All of the aforementioned choices influence the final outcome

and performance of the algorithm. While some parts of the

training pipeline are well-established and robust—like pre-

training amodel on ImageNet—choices about the dataset, archi-

tecture, augmentation, fine-tuning procedure, etc. will inevitably

influence the quality of the pose estimation algorithm (Box 2).

See Figure 3 for a qualitative impression of augmentation effects

of some of these decisions (see also Figure 8). We will discuss

this in more detail in the Pitfalls section.



Figure 4. Schematic Overview of Possible Design Choices for Model Architectures and Training Process
(A) A simple but powerful variant (Insafutdinov et al., 2016) is a ResNet-50 (He et al., 2016) architecture adapted to replace the final downsampling operations by
atrous convolutions (Chen et al., 2018) to keep a stride of 16, and then a single deconvolution layer to upsample to output maps with stride 8. It also forms the
basis of other architectures (Xiao et al., 2018). The encoder can also be exchanged for different backbones to improve speed or accuracy (see Box 2).
(B) Other approaches like stacked hourglass networks (Newell et al., 2016) are not pre-trained and employ skip connections between encoder and decoder layers
to aid the upsampling process.
(C) For training the network, the training data comprising input images and target heatmaps is used. The target heatmap is compared with the forward prediction.
Thereby, the parameters of the network are optimized to minimize the loss that measures the difference between the predicted heatmap and the target heatmap
(ground truth).
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So far, we considered algorithms able to infer 2D keypoints

from videos by training deep neural networks on previously

labeled data. Naturally, there is also much work in computer

vision and machine learning toward the estimation of 3D key-

points from 2D labels, or to directly infer 3D keypoints. In the

interest of space, we do not cover 3D pose estimation, but

refer the interested reader to Martinez et al. (2017), Mehta

et al. (2016), Tomè et al. (2017), Chen and Ramanan (2017),

and Yao et al. (2019) as well as, specifically for neuroscience,

Yao et al. (2019), G€unel et al. (2019), Nath et al. (2019), Zim-

mermann et al. (2020), Karashchuk et al. (2020), and Bala

et al. (2020).

Lastly, it is not understood how CNNs make decisions, and

they often find ‘‘shortcuts’’ (Geirhos et al., 2020).While this active

research area is certainly beyond the scope of this primer, from

practical experience we know that at least within-domain (i.e.,
data that is similar to the training set) DNNs work very well for

pose estimation, which is the typical setting relevant for down-

stream applications in neuroscience. It is worth noting that in or-

der to optimize performance, there is no one-size-fits-all solu-

tion. Thus, we hope by building intuition in users of such

systems, we provide the necessary tools to make these deci-

sions with more confidence (Figure 6).

SCOPE AND APPLICATIONS

Markerless motion capture can excel in complicated scenes,

with diverse animals, and with any camera available (mono-

chrome, RGB, depth cameras, etc.). The only real requirement

is the ability of the human to be able to reliably label keypoints

(manually or via alternative sources). Simply, you need to be

able to see what you want to track. Historically, due to limitations
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Figure 5. Multi-Animal Pose Estimation Approaches
(A) Bottom-up approaches detect all the body parts (e.g., elbow and shoulder in example) as well as ‘‘limbs’’ (part confidencemaps). These limbs are then used to
associate the body parts within individuals correctly (top rowfrom OpenPose, Cao et al. [2018]; bottom row from DeepLabCut [v2.2, unpublished]). For both
OpenPose and DeepLabCut (v2.2), the body parts, part confidence maps (pafs) are predicted as different decoders (also known as output heads) from the
encoder.
(B) Top-down approaches localize individuals with bounding-box detectors and then directly predict the posture within each bounding box. This does not require
part confidencemaps but is subject to errors when bounding boxes are wrongly predicted (see black bounding box encompassing two players in subpael c). The
displayed figures, adapted from Xiao et al. (2018), improved this disadvantage by predicting bounding boxes per frame and forward predicting them across time
via visual flow.
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in computer vision algorithms, experimentalists would go to

great lengths to simplify the environment, even in the laboratory

(i.e., no bedding, white or black walls, high contrast), and this is

no longer required with deep learning-based pose estimation.

Now, the aesthetics one might want for photographs or videos

taken in daily life are the best option.

Indeed, the field has been able to rapidly adopt these tools for

neuroscience. Deep learning-based markerless pose estimation

applications in the laboratory have already been published for

flies (Mathis et al., 2018; Pereira et al., 2019; Graving et al.,

2019; G€unel et al., 2019; Karashchuk et al., 2020; Liu et al.,

2020), rodents (Mathis et al., 2018; Mathis and Warren, 2018;

Pereira et al., 2019; Graving et al., 2019; Arac et al., 2019; G€unel

et al., 2019; Zimmermann et al., 2020; Liu et al., 2020), horses

(Mathis et al., 2019), dogs (Yao et al., 2019), rhesus macaques

(Berger et al., 2020; Yao et al., 2019; Bala et al., 2020; Labuguen

et al., 2020), and marmosets (Ebina et al., 2019); the original ar-

chitectures were developed for humans (Insafutdinov et al.,

2016; Newell et al., 2016; Cao et al., 2018). Outside of the labo-

ratory, DeepPoseKit was used for zebras (Graving et al., 2019)

and DeepLabCut for 3D tracking of cheetahs (Nath et al.,

2019), for squirrels (Barrett et al., 2020), and for macaques (Lab-

uguen et al., 2020), highlighting the great ‘‘in-the-wild’’ utility of
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this new technology (Mathis and Mathis, 2020). As outlined in

the principles section and illustrated by these applications, these

deep learning architectures are general-purpose and can be

broadly applied to any animal and/or condition.

Recent research highlights the prevalent representations of

action across the brain (Kaplan and Zimmer, 2020), which em-

phasizes the importance of quantifying behavior even in non-

motor tasks. For instance, pose estimation tools have recently

been used to elucidate the neural variability across cortex in

humans during thousands of spontaneous reach movements

(Peterson et al., 2020). Pupil tracking is of great importance

for visual neuroscience. One recent study by Meyer et al.

used head-fixed cameras and DeepLabCut to reveal two

distinct types of coupling between eye and head movements

(Meyer et al., 2020). In order to accurately correlate neural ac-

tivity to visual input, tracking the gaze is crucial. The recent

large open dataset from the Allen Institute includes imaging

data of six cortical and two thalamic regions in response to

various stimuli classes as well as pupil tracking with DeepLab-

Cut (Siegle et al., 2019). The International Brain Lab has inte-

grated DeepLabCut into their workflow to track multiple body

parts of decision-making mice including their pupils (Harris

et al., 2019).



Figure 6. An Overview of the Workflow for Deep Learning-Based Pose Estimation, which Highlights Several Critical Decision Points
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Measuring relational interactions is another major direction

that has been explored less in the literature so far but is feasible.

Because the feature detectors for pose estimation are of general

nature, one can easily not only track the posture of individuals

but also the tools and objects one interacts with (e.g., for

analyzing golf or tennis). Furthermore, social behaviors and

parenting interactions (for example in mice) can now be studied

noninvasively.

Due to the general capabilities, these tools have several appli-

cations for creating biomarkers by extracting high-fidelity animal

traits (e.g., in the pain field) (Tracey et al., 2019) and for moni-

toring motor function in healthy and diseased conditions (Micera

et al., 2020).

DeepLabCut was also integrated with tools for X-ray analysis

(Laurence-Chasen et al., 2020). For measuring joint center loca-

tions in mammals, arguably, X-ray is the gold standard. Of

course, X-ray data also pose challenges for extracting body

part locations. A recent paper shared methodology to integrate

DeepLabCut with XROMM, a popular analysis suite, to advance

the speed and accuracy for X-ray-based analysis (Laurence-

Chasen et al., 2020).

HOW DO THE (CURRENT) PACKAGES WORK?

Here, we will focus on packages that have been used in behav-

ioral neuroscience, but the general workflow for pose estimation

in computer vision research is highly similar. What has made

experimentalist-focused toolboxes different is that they provide

essential code to generate and train on one’s own datasets.

Typically, what is available in computer vision-focused pose esti-

mation repositories is code to run inference (video analysis) and/

or run training of an architecture for specific datasets around

which competitions happen (e.g., MS COCO [Lin et al., 2014]

and MPII pose [Andriluka et al., 2014]). Although these are two

crucial steps, they are not sufficient to develop tailored neural

networks for an individual lab or experimentalist. Thus, the ‘‘bar-

rier to entry’’ is often quite high to use these tools. It requires

knowledge of deep learning languages to build appropriate

data loaders, data augmentation pipelines, and training regimes.

Therefore, in recent years several packages have focused not
only on animal pose estimation networks but on providing users

a full pipeline that allows for (1) labeling a customized dataset

(frame selection and labeling tools), (2) generating test/train da-

tasets, (3) data augmentation and loaders, (4) neural architec-

tures, (5) code to evaluate performance, (6) run video inference,

and (7) post-processing tools for simple readouts of the acquired

machine-labeled data.

Thus far, around 10 packages have become available in the

past 2 years (Mathis et al., 2018; Pereira et al., 2019; Graving

et al., 2019; G€unel et al., 2019; Arac et al., 2019; Zimmermann

et al., 2020; Bala et al., 2020; Liu et al., 2020). Each has focused

on providing slightly different user experiences, modularity,

available networks, and balances to the speed/accuracy trade-

off for video inference. Several include their (adapted) implemen-

tations of the original DeepLabCut or LEAP networks as well

(Graving et al., 2019; Liu et al., 2020). However, the oneswe high-

light have the full pipeline delineated above as a principle and are

open source (i.e., at minimum inference code is available) (see

Table 1). The progress gained and challenges they set out to

address (and some that remain) are reviewed elsewhere (Mathis

and Mathis, 2020; Seethapathi et al., 2019). Here, we discuss

collective aims of these packages (see also Figure 6).

Current packages for animal pose estimation have focused

primarily on providing tools to train tailored neural networks to

user-defined features. Because experimentalists need flexibility

and are tracking very different animals and features, the most

successful packages (in terms of user base as measured by ci-

tations andGitHub engagement) are species agnostic. However,

given they are all based on advances from prior art in human

pose estimation, the accuracy of any one package given the

breadth of options that could be deployed (i.e., data augmenta-

tion, training schedules, and architectures) will remain largely

comparable, if such tools are provided to the user. What will

determine performance the most is the input training data pro-

vided and the capacity of the architectures.

It is notable that using transfer learning has proven to be ad-

vantageous for better robustness (i.e., its ability to generalize)

(Mathis et al., 2018, 2019; Arac et al., 2019), which was first de-

ployed by DeepLabCut (see Table 1). Now, training on large an-

imal-specific datasets has been made available in DeepLabCut
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Table 1. Overview of Popular Deep Learning Tools for Animal Motion Capture

Any Species 3D >1 Animal Training Code Full GUI Ex. Data PT-NNs Released Citations

DeepLabCuta yes yes yes yes yes yes many 4/2018 491

LEAPb yes no yes yes yes yes no 6/2018 98

DeepBehaviorc no yes yes no no no no 5/2019 15

DeepPoseKitd yes no no yes partial yes no 8/2019 48

DeepFly3De no yes no 2D only partial yes fly 5/2019 21

FreiPosef no yes no partial no yes no 2/2020 1

Optiflexg yes no no yes partial yes no 5/2020 0

Here, we denote if each tool can be used to create tailored networks or if only specific animal tools are provided (i.e., only work ‘‘as-is’’ on a fly or rat).

We only highlight if beyond human pre-trained neural networks (PT-NNs) are available. We also provide the release date of code and current citations

for noted references, including those to related preprints (indexed from Google Scholar in early September 2020). Note: LEAP is deprecated and sup-

planted by sleap.
aMathis et al., 2018; Nath et al., 2019; bPereira et al., 2019; cArac et al., 2019; dGraving et al., 2019; eG€unel et al., 2019; fZimmermann et al., 2020; gLiu et

al., 2020
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as well (e.g., a horse pose dataset with >8,000 annotated images

of 30 horses) (Mathis et al., 2019). This allows the user to bypass

the only manual part of curating and labeling ground truth data,

and these models can directly be used for inference on novel

videos. For DeepLabCut, this is an emerging community-driven

effort, with external labs already contributing models and data

(http://modelzoo.deeplabcut.org/). In the future, having the abil-

ity to skip labeling and training and run video inference with

robust models will lead to more reproducible and scalable

research. For example, as we show in other sections of the

primer, if the labeling accuracy is not of a high quality and the

data are not diverse enough, then the networks are not able to

generalize to so-called ‘‘out-of-domain’’ data. If, as a commu-

nity, we collectively build stable and robust models that leverage

the breadth of behaviors being carried out in laboratories world-

wide, we can work toward models that would work in a plug-in-

play fashion. We anticipate new datasets andmodels to become

available in the next months to years.

All packages, just like all applications of deep learning to

video, prefer access to GPU computing resources (see Box 3).

On GPUs, one experiences faster training and inference times,

but the code can also be deployed on standard CPUs or laptops.

With cloud computing services, such as Google Colaboratory

and JupyterLab, many pose estimation packages can simply

be deployed on remote GPU resources. This still requires (1)

knowledge about these resources and (2) toolboxes providing

so-called ‘‘notebooks’’ that can be easily deployed. However,

given these platforms have utility beyond just pose estimation,

they are worthwhile to learn about.

For the non-GPU aspects, only a few packages have provided

easy-to-use graphical user interfaces that allow users with no

programming experience to use the tool (see Table 1). Last,

the available packages vary in their access to 3D tools, multi-an-

imal support, and types of architectures available to the user,

which is often a concern for speed and accuracy. Additionally,

some packages have limitations such as allowing only the

same-sized videos for training and inference, whereas others

are more flexible. These are all key considerations when

deciding which ecosystem to invest in learning (as every pack-

age has taken a different approach to the API).
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Perhaps the largest barrier to entry for using deep learning-

based pose estimation methods is managing the computing re-

sources (see Boxes 3 and 4). From our experience, installing

GPUdrivers and thedeep learningpackages (TensorFlowandPy-

Torch) that all thepackages relyon is thebiggestchallenge.To this

end, in addition to documentation that is ‘‘user-focused’’ (i.e., not

just an API for programmers), resources likewebinars, video tuto-

rials, workshops, Gitter, and community-forums (like StackOver-

flow and Image Forum SC) have become invaluable resources

for the modern neuroscientist. Here, users can ask questions

and get assistance from developers and users alike. We believe

this has also been a crucial step for the success of DeepLabCut.

Although some packages provide full GUI-based control over

the packages, to utilize more advanced features at least minimal

programming knowledge is ideal. Thus, better training for the

increasingly computational natureof neurosciencewill be crucial.

Making programming skills a requirement of graduate training,

building better community resources, and leveraging the fast-

moving world of technology to harness those computing and

user resourceswill becrucial. In animal poseestimation, although

there is certainly an attempt to makemany of the packages user-

friendly (i.e., to onboard users) and have a scalable discussion

around commonproblems,we founduser forums to be very valu-

able (Rueden et al., 2019). Specifically, DeepLabCut is amember

of the Scientific Community Image Forum (https://forum.image.

sc) alongside other packages that arewidely used for image anal-

ysis in the life sciencessuchasFiji (Schindelin et al., 2012), napari,

CellProfiler (McQuin et al., 2018), Ilastik (Sommer et al., 2011),

and scikit-image (van der Walt et al., 2014).

PRACTICAL CONSIDERATIONS FOR POSE ESTIMATION
(WITH DEEP LEARNING)

As a recent field gaining traction, it is instructive to regard the

operability of deep learning-powered pose estimation in light of

well-established, often gold standard, techniques.

General Considerations and Pitfalls
As discussed in Scope and Applications and as evidenced by the

strong adaptation of the tools, deep learning-based pose

http://modelzoo.deeplabcut.org/
https://forum.image.sc
https://forum.image.sc


Box 3. Computing Hardware

d CPU: the central processing unit (CPU) is the core of a computer and executes computer programs. CPUs work well on

sequential or lightly parallelized routines due to the limited number of cores.

d GPU: a graphical processing unit (GPU) is a specialized computing device designed to rapidly process and alter memory.

GPUs are ideal for computer graphics and often located in graphics cards. Their highly parallel architecture enables them

to be more efficient (NVIDIA data center deep learning product performance: https://developer.nvidia.com/deep-learning-

performance-training-inference) than CPUs for algorithms with many small subroutines that can be launched in parallel.

They can be applied to run DNNs at higher speed (Krizhevsky et al., 2012) and pose estimation algorithms in particular (Mathis

and Warren, 2018; Mathis et al., 2019; Kane et al., 2020).

d Affordability of GPUs:modern GPUs are affordable (around 300–800 USD for cards that can be used for the pose estimation

tools mentioned here and up to 10,000 USD for high-end cards) and ideally suited to run video processing within a single lab in

a decentralized way. They can be placed into standard desktop computers or even ‘‘gaming’’ laptops. However, to get started

it might be easier to test software in cloud computing services first for ease of use (i.e., no driver installation).

d Cloud computing: ability to use resources online rapidly (minimal installation) often in a pay-per-use scheme. Two relevant

examples are Google Colaboratory and My Binder. Google Colaboratory is an online platform for free GPU use with run times

of up to 6 h (https://colab.research.google.com/). My Binder allows turning a Git repository into a collection of interactive note-

books by running them in an executable environment, making your code immediately reproducible by anyone, anywhere

(https://mybinder.org).
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estimation workswell in standard setups with visible animals. The

most striking advantage over traditional motion capture systems

is the absence of any need for body instrumentation. Although

seemingly obvious, the previous statement hides the belated

recognition that marker-based motion capture suffers greatly

from the wobble of markers placed on the skin surface. That

behavior, referred to as ‘‘soft tissue artifact’’ among movement

scientists and attributable to the deformation of tissues under-

neath the skin, such as contracting muscles or fat, is now known

to be themajor obstacle to obtaining accurate skeletal kinematics

(Camomilla et al., 2017). Note: intra-cortical pins and biplane fluo-

roscopy give direct, uncontaminated access to joint kinematics.

The first, however, is invasive (and entails careful surgical proced-

ures) (Ramsey et al., 2003), whereas the second is only operated

in very constrained and complex laboratory settings (List et al.,

2017). Both are local to a specific joint, and as such, do not strictly

address the task of pose estimation. To make matters worse,

contaminated marker trajectories may be harmful in clinical con-

texts, potentially invalidating injury risk assessment (e.g., Smale

et al., 2017). Although a multitude of numerical approaches exist

to tackle this issue, the most common yet incomplete solution is

multi-body kinematics optimization (or ‘‘inverse kinematics’’ in

computer graphics and robotics) (Begon et al., 2018). This pro-

cedure uses a kinematic model and searches for the body pose

that minimizes in the least-squares sense the distance between

the measured marker locations and the virtual ones from the

model while satisfying the constraints imposed by the various

joints (Lu and O’Connor, 1999). Its accuracy is, however, deci-

sively determined by the choice of the underlying model and its

fidelity to an individual’s functional anatomy (Begon et al.,

2018). In contrast, motion capture with deep learning elegantly

circumvents the problemby learning a geometry-aware represen-

tation of the body from the data to associate keypoints to limbs

(Cao et al., 2018; Insafutdinov et al., 2016; Mathis and Mathis,

2020), which, of course, presupposes that one can avoid the

‘‘soft tissue artifact’’ when labeling.
At present, deep learning-powered pose estimation can be

poorly suited to evaluate rotation about a bone’s longitudinal

axis. From early markerless techniques based on visual hull

extraction, this is a known problem (Ceseracciu et al., 2014). In

marker-based settings, the problem has long been addressed

by tracking clusters of at least three non-aligned markers to fully

reconstruct a rigid segment’s six degrees of freedom (Spoor and

Veldpaus, 1980). Performing the equivalent feat in a markerless

case is difficult, but it is possible by labeling multiple points

(e.g., on either side of the wrist to get the lower-limb orientation).

Still, recent hybrid, state-of-the-art approaches jointly training

under both position and orientation supervision augur very well

for video-based 3D joint angle computation (Xu et al., 2020;

Zhou et al., 2020).

With the notable exception of approaches leveraging radio

wave signals to predict body poses through walls (Zhao et al.,

2018), deep learning-powered motion capture requires the indi-

viduals be visible; this is impractical for kinematic measurements

over wide areas. A powerful alternative is offered by Inertial Mea-

surement Units (IMUs)—low-cost and lightweight devices typi-

cally recording linear accelerations, angular velocities, and the

local magnetic field. Raw inertial data can be used for coarse

behavior classification across species (Kays et al., 2015; Chak-

ravarty et al., 2019). They can also be integrated to track

displacement with lower power consumption and higher tempo-

ral resolution than GPS (Bidder et al., 2015), thereby providing a

compact and portable way to investigate whole body dynamics

(e.g., Wilson et al., 2018) or, indirectly, energetics (Gleiss et al.,

2011). Recent advances in miniaturization of electronical com-

ponents now also allow precise quantification of posture in small

animals (Pasquet et al., 2016) and open new avenues for kine-

matic recordings inmultiple animals at once at finemotor scales.

Nonetheless, IMU-based full-body pose reconstruction ne-

cessitates multiple sensors over the body parts of interest; com-

mercial solutions require up to 17 of them (Roetenberg et al.,

2009). That burden was recently eased by utilizing a statistical
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Box 4. Reproducible Software

Often installation of deep learning languages like TensorFlow/Keras (Abadi et al., 2016) and PyTorch (Paszke et al., 2019) is the

biggest hurdle for getting started.

d Python virtual environments: software often has many dependencies, and they can conflict if multiple versions are required

for different needs. Thus, placing dependencies within a contained environment can minimize issues. Common environments

include Anaconda (conda) and virtualenv, both for Python code bases.

d Docker: delivers software in packages called containers, which can be run locally or on servers. Containers are isolated from

one another and bundle their own software, libraries, and configuration files (https://docker.com) (Merkel, 2014).

d GitHub: https://github.com is a platform for developing and hosting software, which uses Git version control. Version control is

excellent to have history-dependent versions and workspaces for code development and deployment. Gitlab (https://gitlab.

com/explore) also hosts code repositories.
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body model that incorporates anatomical constraints, together

with optimizing poses over multiple frames to enforce coherence

between the model orientation and IMU recordings—reducing

the system down to six sensors while achieving stunning motion

tracking (von Marcard et al., 2017). Yet two additional difficulties

remain. The first arises when fusing inertial data in order to esti-

mate a sensor’s orientation (for a comprehensive description of

mathematical formalism and implementation of common fusion

algorithms, see Sabatini, 2011). The process is susceptible to

magnetic disturbances that distort sensor readings and, conse-

quently, orientation estimates (Fan et al., 2017). The second

stems from the necessity to align a sensor’s local coordinate

system to anatomically meaningful axes, a step crucial (among

others) to calculating joint angles (Lebleu et al., 2020). The cali-

bration is ordinarily carried out by having the subject perform a

set of predefined movements in sequence whose execution de-

termines the quality of the procedure. Yet in some pathological

populations (let alone in animals), calibration may be challenging

to say the least, deteriorating pose reconstruction accuracy (Var-

gas-Valencia et al., 2016).

A compromise to making the task less arduous is to combine

videos and body-worn inertial sensors. Thanks to their comple-

mentary nature, incorporating both cuesmitigates the limitations

of each individual system; i.e., both modalities reinforce one

another in that IMUs help disambiguate occlusions, whereas

videos provide disturbance-free spatial information (Gilbert

et al., 2019). The idea also applies particularly well to the tracking

of multiple individuals—even without the use of appearance fea-

tures, advantageously—by exploiting unique movement signa-

tures contained within inertial signals to track identities over

time (Henschel et al., 2019).

Pitfalls of Using Deep Learning-Based Motion Capture
Despite being trained on large-scale datasets of thousands of in-

dividuals, even the best architectures fail to generalize to ‘‘atyp-

ical’’ postures (with respect to the training set). This is wonder-

fully illustrated by the errors committed by OpenPose on yoga

poses (Huang et al., 2019).

These domain shifts are major challenges (also illustrated

below), and although this is an active area of research with

much progress, the easiest way to make sure that the algorithm

generalizes well is to label data that are similar to the videos at

inference time. However, due to active learning implemented

for many packages, users can manually refine the labels on

‘‘outlier’’ frames.
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Another major caveat of deep learning-powered pose estima-

tion is arguably its intrinsic reliance on high-quality labeled im-

ages. This suggests that a labeled dataset that reflects the vari-

ability of the behavior should be used. If one—due to the quality

of the video—cannot reliably identify body parts in still images

(i.e., due to massive motion blur, uncertainty about body part

[left/right leg crossing], or animal identity), then the video quality

should be fixed, or sub-optimal results should be expected.

To give readers a concrete idea about label errors, augmenta-

tion methods, and active learning, we also provide some simple

experiments with shared code and data. Code for reproducing

these analyses is available at https://github.com/DeepLabCut/

Primer-MotionCapture.

To illustrate the importance of error-free labeling, we artificially

corrupted labels from the trail-tracking dataset from Mathis et al.

(2018). The corruptions respectively simulate inattentive labeling

(e.g., with left-right body parts being occasionally confounded)

and missing annotation or uncertainty as to whether to label an

occluded body part. We corrupted 1%, 5%, 10%, and 20% of

the training dataset either by swapping two labels or removing

one and then trained on 5% of the full data (n = 1,066 images).

The effect ofmissing labels is barely noticeable (Figure 7A). Swap-

ping labels, on the other hand, causes a substantial drop in perfor-

mance, with an �10% loss in percentage of correct keypoints

(PCK) (Figure 7B). We therefore reason that careful labeling,

more so than labeling a very large number of images, is the safest

guard against poor ground truth annotations. We believe that

explicitly modeling labeling errors, as done in Johnson and Ever-

ingham (2011), will be an active area of research and integrated in

some packages.

Even if labeledwell, augmentation greatly improves results and

should be used. For instance,when training on the example data-

set of (highly) correlated frames from one short video of one indi-

vidual, the loss nicely plateaus and shows comparable train/test

errors for three different augmentation methods (Figures 8A and

8B). The three models also give good performance and gener-

alize to a test video of a different mouse. However, closer inspec-

tion reveals that the ‘‘scalecrop’’ augmentation method, which

only performs cropping and scaling during training (Nath et al.,

2019), leads to swaps in body parts with this small training set

from only one different mouse (Figures 8C and 8D). The other

two methods (imgaug and tensorpack), which were configured

to perform rotations of the training data, could robustly track

the posture of the mouse (Video S1). This discrepancy becomes

striking when observing the PCK plots: imgaug and tensorpack

https://github.com/DeepLabCut/Primer-MotionCapture
https://github.com/DeepLabCut/Primer-MotionCapture
https://docker.com
https://github.com
https://gitlab.com/explore
https://gitlab.com/explore
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Figure 7. Labeling Pitfalls: How Corruptions Affect Performance
(A) Illustration of two types of labeling errors. Top is ground truth, middle is missing a label at the tailbase, and bottom is if the labeler swapped the ear identity (left
to right, etc.).
(B) Using a small training dataset of 106 frames, how do the corruptions in (A) affect the percent of correct keypoints (PCK) on the test set as the distance to ground
truth increases from 0 pixels (perfect prediction) to 20 pixels (larger error)? The x axis denotes the difference in the ground truth to the predicted location (RMSE in
pixels), whereas the y axis is the fraction of frames considered accurate (e.g., z80% of frames fall within 9 pixels, even on this small training dataset, for points
that are not corrupted, whereas for swapped points this falls toz65%). The fraction of the dataset that is corrupted affects this value. Shown is whenmissing the
tailbase label (top) or swapping the ears in 1%, 5%, 10%, and 20%of frames (of 106 labeled training images). Swapping versusmissing labels has amore notable
adverse effect on network performance.
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outperform scalecrop by a margin of up to z30% (Figure 8E).

One simple way to generalize to this additional case is by active

learning (Nath et al., 2019), which is also available for some pack-

ages. Thereby, one annotates additional frameswith poor perfor-

mance (outlier frames) and then trains the network from the final

configuration, which thus only requires a few thousand iterations.

Adding 28 annotated frames from the higher resolution camera,

we get good generalization for test frames from both scenarios

(Figure 8F). Generally, this illustrates how the lack of diversity in

training data leads to worse performance but can be fixed by

adding frames with poor performance (active learning).

Coping with Pitfalls
Fortunately, dealing with the most common pitfalls is relatively

straightforward and mostly demands caution and common

sense. Rules of thumb and practical guidelines are given in

Box 5. Video quality should be envisaged as a trade-off between

storage limitations, labeling precision, and training speed; e.g.,

the lower the resolution of a video, the smaller the occupied

disk space and the faster the training speed, but the harder it

gets to consistently identify body parts. In practice, DeepLabCut

was shown to be very robust to downsizing and video compres-

sion, with pose reconstruction degrading only after scaling

videos down to a third of their original size or compression by

a factor of 1,000 (Mathis and Warren, 2018).

Body parts should be labeled reliably and consistently across

frames that preferably capture a variety of behaviors. Note that

some packages provide the user means to automatically extract

frames differing in visual content based on unsupervised clus-

tering, which simplifies the selection of relevant images in sparse

behaviors.

Utilize symmetries for training with augmentation and try to

include image augmentations that are helpful. Use the strongest
model (given the speed requirements). Check performance and

actively grow the training set if errors are found.

Pose estimation algorithms can make different types of errors:

jitter, inversion (e.g., left/right), swap (e.g., associating body part

to another individual), and miss (Ruggero Ronchi and Perona,

2017). Depending on the type of errors, different causes need

to be addressed (i.e., check the data quality for any human-

applied mistakes [Mathis et al., 2018] and use suitable augmen-

tation methods). For some cases, post processing filters can be

useful (such as Kalman filters), but also graphical models or other

methods that learn the geometry of the body parts. We also

believe that future work will explicitly model labeling errors dur-

ing training.

WHAT TO DO WITH MOTION CAPTURE DATA?

Pose estimation with deep learning is to relieve the user of the

painfully slow digitization of keypoints. With markerless

tracking, you need to annotate a much smaller dataset, and

this can be applied to new videos. Pose estimation also serves

as a springboard to a plethora of other techniques. Indeed,

many new tools are specifically being developed to aid users

of pose estimation packages to analyze movement and behav-

ioral outputs in a high-throughput manner. Plus, many such

packages existed pre-deep learning and can now be leveraged

with this new technology as well. Although the general topic of

what to do with the data is beyond this primer, we will provide a

number of pointers. These tools fall into three classes: time se-

ries analysis, supervised, and unsupervised learning tools.

A natural step ahead is the quantitative analysis of the keypoint

trajectories. The computation of linear and angular displace-

ments, as well as their time derivatives, lays the ground for

detailed motor performance evaluation—a great introduction to
Neuron 108, October 14, 2020 57



Figure 8. Data Augmentation Improves Performance
Performance of three different augmentation methods on the same dataset of around 100 training images from one short video of one mouse (thus correlated).
Scalecrop is configured to only change the scale and randomly crop images; Imgaug also performs motion blur and rotation (±180�) augmentation. Tensorpack
performs Gaussian noise and rotation (±180�) augmentation.
(A and B) Loss over training iterations has plateaued (A), and test errors in pixels appear comparable for all methods (B).
(C and D) Tail base-aligned skeletons across time for a video of a different mouse with predictions displayed as a ‘‘cross’’ connecting snout to tail and left ear to
right ear. (C). Note the swap of the ‘‘T’’ in the shaded gray zone (and overlaid on the image to the right in (D). Imgaug and tensorpack, which also included full 180�

rotations, work perfectly (see also Video S1, which shows the three methods in parallel). This example highlights that utilizing the rotational symmetry of the data
during training can give excellent performance (without additional labeling).
(E) Performance of the networks on different mice recorded with the same camera (top) and a different camera (z2.53magnification; bottom). Networks trained
with tensorpack and imgaug augmentation generalize much better and, in particular, generalize very well to different mice. The generalization to the other camera
is difficult, but also works better for tensorpack and imgaug augmentation.
(F) Performance of networks on same data as in (E), but after an active learning step, adding 28 training frames from the higher-resolution camera and training for a
few thousand iterations. Afterward, the network generalizes well to both scenarios.
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elementary kinematics can be found in Winter (2009), and a thor-

ough description of 151 common metrics is given in Schwarz

et al. (2019). These have a broad range of applications, of which

we highlight a system for assessing >30 behaviors in groups of

mice in an automatedway (deChaumont et al., 2019) or an inves-

tigation of the evolution of gait invariants across animals (Catavi-

tello et al., 2018). Furthermore, kinematic metrics are the basis

from which to deconstruct complex whole-body movements

into interpretable motor primitives, non-invasively probing

neuromuscular control (Longo et al., 2019). Unsupervised

methods, such as clustering methods (Pedregosa et al., 2011),
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MotionMapper (Berman et al., 2014), MoSeq (Wiltschko et al.,

2015), or variational autoencoders (Luxem et al., 2020), allow

the extraction of common ‘‘kinematic behaviors’’ such as

turning, running, and rearing. Supervised methods allow the pre-

diction of human-defined labels such as ‘‘attack’’ or ‘‘freezing.’’

For this, general purpose tools such as scikit-learn (Pedregosa

et al., 2011) can be ideal, or tailored solutions with integrated

GUIs such as JAABA can be used (Kabra et al., 2013). Sturman

et al. (2020) have developed an open source package to utilize

motion capture outputs together with classifiers to automate hu-

man annotations for various behavioral tests (open field,



Box 5. Avoiding Pitfalls

d Video quality: while deep learning-based methods are more robust than other methods and can even learn from blurry, low-

resolution images, you will make your life easier by recording quality videos.

d Labeling: label accurately and use enough data from different videos. 10 videos with 20 frames each is better than 1 video with

200 frames. Check labeling quality. If multiple people label, agree on conventions—i.e., be sure that for a larger body part (e.g.,

back of mouse) the same location is labeled.

d Dataset curation: collect annotation data from the full repertoire of behavior (different individuals, backgrounds, postures).

Automatic methods of frame extraction exist, but the videos need to be manually selected.

d Data augmentation: are there specific features you know happen in your videos, like motion blur or contrast changes? Can

rotational symmetry or mirroring be exploited? Then use an augmentation scheme that can build this into training.

d Optimization: train until loss plateaus and do not over-train. Check that it worked by looking at performance on training images

(both quantitatively and visually), ideally across ‘‘snapshots’’ (i.e., train iterations of the network). If that works, look at test im-

ages. Does the network generalize well? Note that, even if everything is proper, train and test performance can be different due

to overfitting on idiosyncrasies of training set. Bear in mind that the latest iterations may not be the ones yielding the smallest

errors on the test set. It is therefore recommended to store and evaluate multiple snapshots.

d Cross-validation: you can compare different parameters (networks, augmentation, and optimization) to get the best perfor-

mance (see Figure 7).
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elevated plus maze, forced swim test). They showed that these

open source methods outperform commercially available plat-

forms (Sturman et al., 2020).

Kinematic analysis, together with simple principles derived

from physics, also allows the calculation of the energy required

to move about, a methodology relevant to understanding the

mechanical determinants of the metabolic cost of locomotion

(Saibene and Minetti, 2003) or informing the design of bio-

inspired robots (Li et al., 2017; Nyakatura et al., 2019).

Modeling and Motion Understanding
Looking forward, we also expect that motion capture data will be

used to learn task-driven and data-driven models of the senso-

rimotor as well as themotor pathway. We have recently provided

a blueprint combining human movement data, inverse kine-

matics, biomechanical modeling, and deep learning (Sandbrink

et al., 2020). Given the complexity of movement, as well as the

highly nonlinear nature of sensorimotor processing (Madhav

and Cowan, 2020; Nyakatura et al., 2019), we believe that such

approaches will be fruitful to leverage motion capture data to

gain insight into brain function.

PERSPECTIVES

As we highlighted thus far in this primer, markerless motion cap-

ture has reached a mature state in only a few years due to the

many advances in machine learning and computer vision.

Although there are still some challenges left (Mathis and Mathis,

2020), this is an active area of research, and advances in training

schemes (such as semi-supervised and self-supervised learning)

and model architectures will provide further advances and even

less required manual labor. Essentially, now every lab can train

appropriate algorithms for their application and turn videos into

accurate measurements of posture. If setups are sufficiently

standardized, these algorithms already broadly generalize,

even across multiple laboratories as in the case of the Interna-

tional Brain Lab (Harris et al., 2019). But how do we get there,
and how do we make sure the needs of animal pose estimation

for neuroscience applications are met?

Recent Developments in Deep Learning
Innovations in the field of object recognition and detection affect

all aforementioned parts of the algorithm, as we discussed in the

context of using pre-trained representations. An emerging rele-

vant research direction in machine learning is large-scale semi-

supervised and self-supervised representation learning (SSL).

In SSL, the problem of pre-training representations is no longer

dependent on large labeled datasets, as introduced above.

Instead, even larger databases comprising unlabeled exam-

ples—often multiple orders of magnitude larger than the coun-

terparts used in supervised learning—can be leveraged. A vari-

ety of SSL algorithms are becoming increasingly popular in all

areas of machine learning. Recently, representations obtained

by large-scale self-supervised pre-training began to approach

or even surpass performance of the best supervised methods.

Various SSL methods (Oord et al., 2018; Logeswaran and Lee,

2018; Wu et al., 2018; Hénaff et al., 2019; Tian et al., 2019; Hjelm

et al., 2018; Bachman et al., 2019; He et al., 2019; Chen et al.,

2020) made strides in image recognition (Chen et al., 2020),

speech processing (Schneider et al., 2019; Baevski et al.,

2020a, 2020b; Ravanelli et al., 2020), and NLP (Devlin et al.,

2019; Liu et al., 2019), already starting to outperform models ob-

tained by supervised pre-training on large datasets. Considering

that recent SSL models for computer vision continue to be

shared openly (Xie et al., 2020; Chen et al., 2020), these models

can be expected to impact and improve pose estimation, espe-

cially if merely replacing the backend model is required. On top

of that, SSL methods can be leveraged in end-to-end models

for estimating keypoints and poses directly from raw, unlabeled

video (Umer et al., 2020; Tung et al., 2017; Kocabas et al., 2019).

Approaches based on graph neural networks (Scarselli et al.,

2009) can encode priors about the observed structure andmodel

correlations between individual keypoints and across time (Cai

et al., 2019). For some applications (like modeling soft tissue or
Neuron 108, October 14, 2020 59
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volume), full surface reconstructions are needed, and this area

has seen tremendous progress in recent years (G€uler et al.,

2018; Sanakoyeu et al., 2020; Zuffi et al., 2019). Such advances

can be closely watched and incorporated in neuroscience, but

we also believe our field (neuroscience) is ready to innovate in

this domain too.

Pose Estimation Specifically for Neuroscience
The goals of human pose estimation—aside from the purely sci-

entific advances for object detection—range from person local-

ization in videos, self-driving cars, and pedestrian safety to so-

cially aware artificial intelligence (AI). These are related to, but

do differ from, the applied goals of animal pose estimation in

neuroscience. Here, we want tools that give us the highest pre-

cision with the most rapid feedback options possible, and we

want to train on small datasets but have them generalize well.

This is a tall order, but so far we have seen that the glass is (argu-

ably more than) half full. How do we meet these goals going for-

ward? Although much research is still required, there are essen-

tially twoways forward: (1) datasets and associated benchmarks

and (2) algorithms.

Neuroscience Needs (More) Benchmarks
In order to push the field toward innovations in areas the commu-

nity finds important, setting up benchmark datasets and tasks

will be crucial (i.e., the animal version of ImageNet). The commu-

nity can work toward sharing and collecting data of relevant

tasks and curating it into benchmarks. This also has the oppor-

tunity of shifting the focus in computer vision research: instead

of ‘‘only’’ doing human pose estimation, researchers probably

will start evaluating on datasets directly relevant to neuroscience

community. Indeed, there has been a recent interest in more an-

imal-related work at top machine learning conferences (Khan

et al., 2020; Sanakoyeu et al., 2020), and providing proper

benchmarks for such approaches would be ideal.

For animals, such efforts are developing: Khan et al. (2020)

recently shared a dataset comprising 22,400 annotated faces

from 350 diverse species, and Labuguen et al. (2020) announced

a dataset of 13,000 annotated macaque images. We recently

released two benchmark datasets that can be evaluated for

state-of-the-art performance (https://paperswithcode.com) on

within-domain and out-of-domain data (http://horse10.

deeplabcut.org/). The motivation is to train on a limited number

of individuals and test on held out animals (the so-called ‘‘out-

of-domain’’ issue) (Mathis et al., 2019, 2020). We picked horses

due to the variation in coat colors (and provide >8,000 labeled

frames). To directly study the inherent shift in domain between

individuals, we set up a benchmark for common image corrup-

tions, as introduced by Hendrycks et al. (2019), that uses the im-

age corruptions library proposed by Michaelis et al. (2019).

Of course, these aforementioned benchmarks are not suffi-

cient to cover all the needs of the community, so we encourage

consortium-style efforts to curate data and provide additional

benchmarks. Plus, making robust networks is still a major chal-

lenge, evenwhen trainedwith large amounts of data (Beery et al.,

2018; Geirhos et al., 2020). In order to make this a possibility,

it will be important to develop and share common keypoint esti-

mation benchmarks for animals as well as expand the human
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ones to applications of interest, such as sports (Huang

et al., 2019).

Sharing Pre-trained Models
We believe another major step forward will be sharing pre-

trained pose estimation networks. If, as a field, we were to anno-

tate sufficiently diverse data, we could train more robust net-

works that broadly generalize. This success is promised by other

large-scale datasets such as MS COCO (Lin et al., 2014) and

MPII pose (Andriluka et al., 2014). In the computer vision com-

munity, sharing model weights such that models do not need

to be retrained has been critical for progress. For example, the

ability to download pre-trained ImageNet weights is invalu-

able—training ImageNet from scratch on a standard GPU can

take more than a week. Now, they are downloaded within a

few seconds and fine-tuned in packages like DeepLabCut. How-

ever, even for custom training setups, sharing of code and easy

access to cloud computing resources enables smaller labs to

train and deploy models without investment in additional lab re-

sources. Pre-training a typical object recognition model on the

ILSVC is now possible on the order of minutes for less than

100 USD (Coleman et al., 2017) thanks to high-end cloud

computing, which is also feasible for labs lacking the necessary

on-site infrastructure (Box 3).

In neuroscience, we should aim to fine tune even those

models; sharing of mouse-specific, primate-specific weights

will drive interest and momentum from researchers without ac-

cess to such data and further drive innovations. Currently, only

DeepLabCut provides model weights (albeit not at the time of

the original publication) as part of the recently launched Model

Zoo (http://modelzoo.deeplabcut.org/). Currently it contains

models trained on MPII pose (Insafutdinov et al., 2016), dog

and cat models, as well as contributed models for primate facial

recognition, primate full body recognition (Labuguen et al.,

2020), and mouse pupil detection (Figure 6). Researchers can

also contribute in a citizen-science fashion by labeling data on

the web (https://contrib.deeplabcut.org) or by submitting

models.

Both datasets and models will benefit from common format-

ting to ease sharing and testing. Candidate formats are HDF5

(also chosen by NeuroData Without Borders [Teeters et al.,

2015] and DeepLabCut), TensorFlow data (https://www.

tensorflow.org/api_docs/python/tf/data), and/or PyTorch data

(https://pytorch.org/docs/stable/torchvision/datasets.html).

Specifically, for models, proto-buffer formats for weights are

useful and easy to share (Kane et al., 2020; Lopes et al., 2015)

for deployment to other systems. Platforms such as OSF and

Zenodo allow banking of weights, and some papers (Barrett

et al., 2020; Sturman et al., 2020) have also shared their trained

models. We envision that having easy-to-use interfaces to such

models will be possible in the future.

These pre-trained pose estimation networks hold several

promises: it saves time and energy (as different labs do not

need to annotate and train networks) as well as contributes to

reproducibility in science. Like many other forms of biological

data, such as genome sequences and functional imaging data,

behavioral data are notoriously hard to analyze in standardized

ways. Lack of agreement can lead to different results, as pointed

https://paperswithcode.com
http://horse10.deeplabcut.org/
http://horse10.deeplabcut.org/
http://modelzoo.deeplabcut.org/
https://contrib.deeplabcut.org
https://www.tensorflow.org/api_docs/python/tf/data
https://www.tensorflow.org/api_docs/python/tf/data
https://pytorch.org/docs/stable/torchvision/datasets.html
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out by a recent landmark study comparing the results achieved

by 70 independent researchers analyzing nine hypotheses in

shared imaging data (Botvinik-Nezer et al., 2020). To increase

reproducibility in behavioral science, video is a great tool (Gil-

more and Adolph, 2017). Analyzing behavioral data is complex,

owing to its unstructured, large-scale nature, which highlights

the importance of shared analysis pipelines. Thus, building

robust architectures that extract the same behavioral measure-

ments in different laboratories would be a major step forward.

CONCLUSIONS

Deep learning-based markerless pose estimation has been

broadly and rapidly adopted in the past 2 years. This impact

was, in part, fueled by open-source code: by developing and

sharing packages in public repositories on GitHub, they could

be easily accessed for free and at scale. Thesepackages are built

on advances (and code) in computer vision and AI, which has a

strong open science culture. Neuroscience also has strong and

growing open science culture (White et al., 2019), which greatly

impacts the field, as evidenced by tools from the Allen Institute,

the UCLA Miniscope (Aharoni et al., 2019), OpenEphys (Siegle

et al., 2017), and Bonsai (Lopes et al., 2015) (just to name a few).

Moreover, neuroscience and AI have a long history of influ-

encing each other (Hassabis et al., 2017), and research in neuro-

sciencewill likely contribute tomaking AImore robust (Sinz et al.,

2019; Hassabis et al., 2017). The analysis of animal motion is a

highly interdisciplinary field at the intersection of biomechanics,

computer vision, medicine, and robotics with a long tradition

(Klette and Tee, 2008). The recent advances in deep learning

have greatly simplified the measurement of animal behavior,

which, as we and others believe (Krakauer et al., 2017), in turn

will greatly advance our understanding of the brain.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.
neuron.2020.09.017.
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Tomè, D., Russell, C., and Agapito, L. (2017). Lifting from the deep: Convolu-
tional 3d pose estimation from a single image. arXiv, arXiv:1701.00295 https://
arxiv.org/abs/1701.00295.

Tompson, J.J., Jain, A., LeCun, Y., and Bregler, C. (2014). Joint training of a
convolutional network and a graphical model for human pose estimation. ar-
Xiv, arXiv:1406.2984 https://arxiv.org/abs/1406.2984.

Toshev, A., and Szegedy, C. (2013). Deeppose: Human pose estimation via
deep neural networks. arXiv, arXiv:1312.4659 https://arxiv.org/abs/
1312.4659.

Tracey, I., Woolf, C.J., and Andrews, N.A. (2019). Composite pain biomarker
signatures for objective assessment and effective treatment. Neuron 101,
783–800.

Tung, H.-Y., Tung, H.-W., Yumer, E., and Fragkiadaki, K. (2017). Self-super-
vised learning of motion capture. arXiv, arXiv:1712.01337 https://arxiv.org/
abs/1712.01337.

Umer, R., Doering, A., Leibe, B., and Gall, J. (2020). Self-supervised keypoint
correspondences for multi-person pose estimation and tracking in videos. ar-
Xiv, arXiv:2004.12652.

van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner,
J.D., Yager, N., Gouillart, E., and Yu, T.; Scikit-Image Contributors (2014). sci-
kit-image: image processing in Python. PeerJ 2, e453.

Vargas-Valencia, L.S., Elias, A., Rocon, E., Bastos-Filho, T., and Frizera, A.
(2016). An imu-to-body alignmentmethod applied to human gait analysis. Sen-
sors (Basel) 16, 2090.

vonMarcard, T., Rosenhahn, B., Black, M.J., and Pons-Moll, G. (2017). Sparse
inertial poser: Automatic 3d human pose estimation from sparse imus. Com-
put. Graph. Forum 36, 349–360.
Weinstein, B.G. (2018). A computer vision for animal ecology. J. Anim. Ecol. 87,
533–545.

White, S.R., Amarante, L.M., Kravitz, A.V., and Laubach, M. (2019). The future
is open: Open-source tools for behavioral neuroscience research. eNeuro 6,
ENEURO.0223-19.2019.

Wilson, A.M., Hubel, T.Y., Wilshin, S.D., Lowe, J.C., Lorenc, M., Dewhirst,
O.P., Bartlam-Brooks, H.L.A., Diack, R., Bennitt, E., Golabek, K.A., et al.
(2018). Biomechanics of predator-prey arms race in lion, zebra, cheetah and
impala. Nature 554, 183–188.

Wiltschko, A.B., Johnson, M.J., Iurilli, G., Peterson, R.E., Katon, J.M., Pash-
kovski, S.L., Abraira, V.E., Adams, R.P., and Datta, S.R. (2015). Mapping
sub-second structure in mouse behavior. Neuron 88, 1121–1135.

Winter, D. (2009). Biomechanics andMotor Control of HumanMovement (John
Wiley & Sons).

Wu, Y. (2016). Tensorpack. https://github.com/tensorpack/.

Wu, Z., Xiong, Y., Yu, S.X., and Lin, D. (2018). Unsupervised feature learning via
non-parametric instance discrimination. arXiv, arXiv:1805.01978 https://arxiv.
org/abs/1805.01978.

Wu, X., Sahoo, D., and Hoi, S.C. (2020). Recent advances in deep learning for
object detection. arXiv, arXiv:1908.03673 https://arxiv.org/abs/1908.03673.

Xiao, B., Wu, H., and Wei, Y. (2018). Simple baselines for human pose estima-
tion and tracking. arXiv, arXiv:1804.06208 https://arxiv.org/abs/1804.06208.

Xie, Q., Luong,M.-T., Hovy, E., and Le, Q.V. (2020). Self-trainingwith noisy stu-
dent improves imagenet classification. arXiv, arXiv:1911.04252 https://arxiv.
org/abs/1911.04252.

Xu, L., Xu, W., Golyanik, V., Habermann, M., Fang, L., and Theobalt, C. (2020).
Eventcap: Monocular 3d capture of high-speed humanmotions using an event
camera. arXiv, arXiv:1908.11505 https://arxiv.org/abs/1908.11505.

Yao, Y., Jafarian, Y., and Park, H.S. (2019). Monet: Multiview semi-supervised
keypoint detection via epipolar divergence. arXiv, arXiv:1806.00104 https://
arxiv.org/abs/1806.00104.

Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., and Savarese, S. (2018).
Taskonomy: Disentangling task transfer learning. arXiv, arXiv:1804.08328
https://arxiv.org/abs/1804.08328.

Zhao, M., Li, T., Abu Alsheikh, M., Tian, Y., Zhao, H., Torralba, A., and Katabi,
D. (2018). Through-wall human pose estimation using radio signals. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 7356–7365.

Zhou, Y., Habermann, M., Xu, W., Habibie, I., Theobalt, C., and Xu, F. (2020).
Monocular real-time hand shape and motion capture using multi-modal data.
arXiv, arXiv:2003.09572 https://arxiv.org/abs/2003.09572.

Zimmermann, C., Schneider, A., Alyahyay, M., Brox, T., and Diester, I. (2020).
Freipose: A deep learning framework for precise animal motion capture in 3d
spaces. bioRxiv. https://doi.org/10.1101/2020.02.27.967620.

Zuffi, S., Kanazawa, A., Jacobs, D., and Black, M. (2016). 3d menagerie:
Modeling the 3d shape and pose of animals. arXiv, arXiv:1611.07700 https://
arxiv.org/abs/1611.07700.

Zuffi, S., Kanazawa, A., Berger-Wolf, T., and Black, M. (2019). Three-D Safari:
Learning to Estimate Zebra Pose, Shape, and Texture from Images "In the
Wild". arXiv, arXiv:1908.07201 https://arxiv.org/abs/1908.07201.
Neuron 108, October 14, 2020 65

http://refhub.elsevier.com/S0896-6273(20)30717-0/sref147
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref147
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref147
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref147
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref148
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref148
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref148
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref149
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref149
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref150
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref150
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref150
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref150
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref150
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref150
https://arxiv.org/abs/1908.07919
https://arxiv.org/abs/1908.07919
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref152
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref152
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref152
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref153
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref153
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref154
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref154
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref154
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref155
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref155
https://arxiv.org/abs/1701.00295
https://arxiv.org/abs/1701.00295
https://arxiv.org/abs/1406.2984
https://arxiv.org/abs/1312.4659
https://arxiv.org/abs/1312.4659
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref159
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref159
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref159
https://arxiv.org/abs/1712.01337
https://arxiv.org/abs/1712.01337
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref161
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref161
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref161
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref162
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref162
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref162
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref163
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref163
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref163
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref164
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref164
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref164
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref165
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref165
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref166
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref166
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref166
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref167
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref167
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref167
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref167
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref168
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref168
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref168
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref169
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref169
https://github.com/tensorpack/
https://arxiv.org/abs/1805.01978
https://arxiv.org/abs/1805.01978
https://arxiv.org/abs/1908.03673
https://arxiv.org/abs/1804.06208
https://arxiv.org/abs/1911.04252
https://arxiv.org/abs/1911.04252
https://arxiv.org/abs/1908.11505
https://arxiv.org/abs/1806.00104
https://arxiv.org/abs/1806.00104
https://arxiv.org/abs/1804.08328
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref178
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref178
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref178
http://refhub.elsevier.com/S0896-6273(20)30717-0/sref178
https://arxiv.org/abs/2003.09572
https://doi.org/10.1101/2020.02.27.967620
https://arxiv.org/abs/1611.07700
https://arxiv.org/abs/1611.07700
https://arxiv.org/abs/1908.07201

	A Primer on Motion Capture with Deep Learning: Principles, Pitfalls, and Perspectives
	Principles of Deep Learning Methods for Markerless Motion Capture
	Overview of Algorithms
	Datasets and Data Augmentation
	Model Architectures
	Convolutional Neural Network (CNN)
	Loss Functions: Training Architectures on Datasets
	Optimization
	General Considerations and Pitfalls
	Pitfalls of Using Deep Learning-Based Motion Capture
	Coping with Pitfalls
	Modeling and Motion Understanding
	Recent Developments in Deep Learning
	Pose Estimation Specifically for Neuroscience
	Neuroscience Needs (More) Benchmarks
	Sharing Pre-trained Models
	Supplemental Information
	Acknowledgments
	References


